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Abstract

Wildfire management in the United States and elsewhere is challenged by substantial uncertainty regarding the location
and timing of fire events, the socioeconomic and ecological consequences of these events, and the costs of suppression.
Escalating U.S. Forest Service suppression expenditures is of particular concern at a time of fiscal austerity as swelling fire
management budgets lead to decreases for non-fire programs, and as the likelihood of disruptive within-season borrowing
potentially increases. Thus there is a strong interest in better understanding factors influencing suppression decisions and in
turn their influence on suppression costs. As a step in that direction, this paper presents a probabilistic analysis of
geographic and temporal variation in incident management team response to wildfires. The specific focus is incident
complexity dynamics through time for fires managed by the U.S. Forest Service. The modeling framework is based on the
recognition that large wildfire management entails recurrent decisions across time in response to changing conditions,
which can be represented as a stochastic dynamic system. Daily incident complexity dynamics are modeled according to a
first-order Markov chain, with containment represented as an absorbing state. A statistically significant difference in
complexity dynamics between Forest Service Regions is demonstrated. Incident complexity probability transition matrices
and expected times until containment are presented at national and regional levels. Results of this analysis can help
improve understanding of geographic variation in incident management and associated cost structures, and can be
incorporated into future analyses examining the economic efficiency of wildfire management.
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Introduction

Wildfire management in the United States and elsewhere is

challenged by substantial uncertainty regarding the location and

timing of fire events, the socioeconomic and ecological conse-

quences of these events, and the costs of suppression [1].

Escalating U.S. Forest Service (Forest Service) suppression

expenditures is of particular concern at a time of fiscal austerity

as swelling fire management budgets lead to decreases for non-fire

programs, and as the likelihood of disruptive within-season

borrowing potentially increases [2]. Hence there is a strong

interest in better understanding factors influencing suppression

decisions and in turn their influence on suppression costs [3–6].

At a basic level, suppression costs are a function of the type and

amount of firefighting resources assigned to an incident on a daily

basis, as well as the duration of the incident. Most existing

suppression cost models are statistically based however and do not

explicitly consider suppression operations or firefighting resource

use throughout the duration of a wildfire [7–11]. Thus a dynamic

model of suppression operations and incident management

organizations would be useful.

The management of large wildfire incidents presents a complex

and dynamic decision environment, entailing recurrent decisions

across time in response to changing conditions. The state of the

system at any point in time is a multidimensional composite of

many attributes, which for organizational and managerial

purposes is defined by the complexity of the incident (see Incident

Complexity and Organizational Needs). Figure 1 conceptualizes

the evolution of wildfire incident complexity through time as a

stochastic, dynamic system. At each time step, suppression

decisions and environmental conditions jointly influence the state

of the system, but partial control (i.e., limited suppression

effectiveness) and environmental variation (i.e., fire weather

conditions) contribute uncertainty to system dynamics [13–14].

Better understanding how fire managers navigate this decision

environment and how decision support information is used could

ultimately lead to an improved ability to evaluate tradeoffs and to

develop optimal suppression strategies [15].

Greater incident complexity is typically associated with

increased demand for firefighting resource use and thus suppres-

sion costs. Incident cost structures of course will vary with incident

objectives, firefighting resource needs, and incident duration, as

well as local environmental factors. Nevertheless a better

understanding of geographic variation in incident complexity

dynamics and corresponding management needs could help better

identify factors influencing suppression costs and inform potential

fire management investments. Understanding geographic varia-

tion in likely incident management needs could also help identify a

suite of mitigation factors to reduce risks and costs, including

geographic targeting for investments in pre-fire planning and

response capacity.

Previous work has examined the stochastic dynamics of

environmental conditions that influence fire occurrence and

behavior. Martell, for instance, modeled daily changes in the Fire

Weather Index of the Canadian Forest Fire Weather Index System

according to a Markov chain model [16], and Boychuk and

Martell similarly modeled daily changes in fuel moisture condi-

tions and associated fire management work load as a Markov
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chain [17]. More recently, Chow and Regan used a Markov chain

approach to model daily changes in the Burning Index from the

U.S. National Fire Danger Rating System [18]. In the fire

behavior realm, Boychuk et al. [19] and Krougly et al. [20] have

used Markov chains to model fire spread across gridded

landscapes (see also [21]).

Here, analysis of Markov chain applications in the wildfire

context is expanded to consider suppression decision making and

incident complexity dynamics. That is, this work considers not

only changing environmental conditions and/or fire growth, but

also their relation to wildfire management, recognizing that

incident complexity stems from a coupled human-natural system.

Figure 1. Model of the evolution of wildfire incident complexity dynamics through time. At each time step (day), suppression actions and
environmental conditions jointly influence the complexity of the incident. Stochasticity in system evolution is due to partial control and natural
variation. System evolution begins with incident detection and ends with containment. Adapted from [12].
doi:10.1371/journal.pone.0063297.g001

Figure 2. Forest Service Region numbers and names for the continental United States.
doi:10.1371/journal.pone.0063297.g002
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This model is largely consistent with the event-frame model of

incident analysis proposed by MacGregor and González-Cabán,

where management of an incident evolves in discrete steps in

response to changing environmental conditions [22].

In the sections that follow, first a background on incident

complexity and incident management organization is provided.

Next the Markov chain model is presented as well as the two

primary analytical metrics – state transition probabilities and

expected times until containment. Data and results are presented

for national and regional analysis scales, demonstrating significant

differences in incident complexity dynamics and incident dura-

tions across Forest Service Regions (see Figure 2). Lastly

implications of this work and future research directions are

discussed.

Incident Complexity and Organizational Needs
For escaped large wildfires managed in the United States, the

Incident Command System builds organizational capacity (equip-

ment, personnel, etc.) according to the complexity of the wildland

fire event, ranging from Type 5 (least complex) to Type 1 (most

complex). Wildfire management is based upon flexible and

scalable response organizations, built on a tiered system at local,

regional (Geographic Area), and national levels. Type 1 and 2

Incident Management Teams (IMTs) are national and regional

resources, respectively, whereas Types 3–5 are more local. All

wildland fires have a qualified Incident Commander (IC), who is

responsible for maintaining command and control of the incident

management organization and deploying tactical and operational

decisions to achieve incident objectives. Agency administrators set

incident-level strategic objectives, delegate authority to the IC, and

help assess organizational needs. Continual reassessment of the

complexity of the incident ensures the appropriate command

organization is in place. Regulations limiting the length of time a

given IC or IMT can remain on an incident lead to rotations, but

not necessarily to changes in the qualifications of the next IC.

Formalized incident complexity analysis templates facilitate the

assessment of the current command organization, and include

primary factors such as fire behavior, firefighting resources

committed, firefighter safety, natural and developed resources

threatened, ownership and jurisdiction, and external influences

(sociopolitical concerns, etc.).

The National Wildfire Coordinating Group recently adopted an

Organizational Needs Assessment (ONA) as a replacement for the

Type 1–3 incident complexity analysis template. The aim of the

ONA is to assist in situational assessment of complex incidents and

in evaluation of objectives, risks, and management considerations

to determine the appropriate management organization. The

ONA framework is hierarchical and includes multiple attributes,

considering qualitative descriptions (low, moderate, high) of three

primary attributes: Relative Risk, Implementation Difficulty, and

Decision Concerns. Assessed values for each attribute are

incorporated into a needs assessment chart to identify the

appropriate IMT. Assessment of Relative Risk entails consider-

ation of three attributes, Values, Hazard, and Probability, which

themselves are similarly a qualitative composite of multiple

attributes. Assessment of Implementation Difficulty provides an

opportunity to identify local information regarding historic fire

duration, special needs and concerns, and potential tactical

responses. Decision Concerns indicate the difficulty and complex-

ity of the fire, in particular with respect to issues that may influence

and affect the decision space and range of options. Additional

information on interagency standards for wildfire incident

management can be found in the National Interagency Fire

Center’s ‘‘Red Book’’ [23].

The Wildland Fire Decision Support System (WFDSS), used by

the Forest Service and other federal land management agencies for

incident assessment and decision documentation, contains func-

tionality to analyze incident complexity and organizational needs

[24]. Spatial decision support functionality within WFDSS,

including fire behavior modeling and quantification of exposure

levels for values-at-risk, can assist with situational assessment, in

particular Relative Risk [25]. Per WFDSS reporting protocols,

decisions are documented within the system when incident

complexity changes.

Methods

A Markov Model of Incident Complexity Dynamics
Figure 3 presents a conceptual representation of a first-order

Markov chain model of incident complexity dynamics. To simplify

the presentation here only three states are used (H=high, L= low,

and C= contained). In this model, at each time step, incident

complexity probabilistically evolves. PLH corresponds to the

Figure 3. Conceptual representation of Markov Chain model of incident complexity dynamics. Here only three states – high complexity,
low complexity, and incident contained – are used to simplify presentation of the system. The contained state is presented as an absorbing state (i.e.,
PCC = 1).
doi:10.1371/journal.pone.0063297.g003
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probability of transitioning from a low complexity level today to a

high complexity level tomorrow, and so forth. Once an incident is

reported as contained, it is assumed to remain that way, and

incident evolution ends (i.e., ‘incident contained’ is an absorbing

state).

The entire system can be characterized by the state transition

probability matrix, P, a square matrix where each element Pij of

the matrix is located in the ith row and the jth column and

corresponds to the probability of the system being in state j

tomorrow given it is in state i today.

Modeling daily changes in incident complexity requires first

identifying the order of the Markov chain – here a first-order chain

is used – and then quantifying state transition probabilities. The

state transition probability matrix therefore is a 666 matrix,

corresponding to Types 1–5 and the additional absorbing state

‘contained’.

The state transition probability matrix, P, is calculated as

follows. Let nij be the number of times a transition from state i to

state j is observed. Each Pij entry is calculated as shown in

Equation 1. A derived variable of interest is the cumulative

probability of incident complexity increasing (CPI) to Type 1 or

Type 2, conditional on an incident currently being in a lower

complexity state. Higher CPI values are indicative of incident

escalations requiring non-local resources (Equation 2).

Pij~
nijP
j

nij
ð1Þ

CPI~
X
i

X
jvi;j[f1,2g

Pij ð2Þ

Recognizing that P is an absorbing chain allows an alternate

formulation as shown in Equation 3, where I is an identity matrix,

R a rectangular sub-matrix with transition probabilities from

transient (i.e., non-absorbing) states to absorbing states, and Q is a

square (565) sub-matrix giving transition probabilities among

transient states. The fundamental matrix, N, can be calculated as

shown in Equation 4, where each entry Nij is the expected number

of times the chain is in transient state j given it started in transient

state i. The expected time until containment given the chain

started in state i, E(Ti), is calculated as shown in Equation 5.

Table 1. IMT types, number of fire day observations, descriptions, and usage in the incident complexity analysis.

Incident Complexity
Level (Modeled) IMT Type (ICS-209)

Number of Fire Days
(ICS-209) IMT Type Description (ICS-209)

1 1 2,696 Type 1 Team

7 3 Type 1 IC

2 2 5,242 Type 2 Team

8 32 Type 2 IC

3 3 7,990 Type 3 Team

4 2,888 Type 3 IC

4 5 8,315 Type 4 IC

5 6 1,803 Type 5 IC

– A, B, F – Fire Use Management Team (Discontinued)

– C, D – Area Command or Unified Command (Multi-agency)

– E – Strategic Operational Planner (Replaces Fire Use Manager
positions from Wildland Fire Use incidents)

doi:10.1371/journal.pone.0063297.t001

Table 2. Summary statistics on fires obtained from ICS-209 data, sorted according to Forest Service Region, including the
proportion of active days (P(j)) in which a given incident was a given complexity level j (exclusive of containment).

National R1 R2 R3 R4 R5 R6 R8 R9

Number of Fires 1,339 217 80 232 200 226 147 202 35

Total Daily Observations 30,308 9,977 1,852 4,037 5,487 2,730 3,982 1,809 434

Average Time Until
Containment (days)

23 46 23 17 27 12 27 9 12

Average Size (acres) 9,934 9,503 7,492 16,091 11,160 12,880 11,964 1,469 3,255

P(1) 0.09 0.04 0.06 0.09 0.07 0.32 0.15 0.04 0.10

P(2) 0.18 0.13 0.17 0.19 0.14 0.34 0.27 0.13 0.21

P(3) 0.38 0.35 0.47 0.35 0.36 0.28 0.47 0.50 0.25

P(4) 0.29 0.40 0.21 0.36 0.30 0.05 0.09 0.30 0.32

P(5) 0.06 0.07 0.09 0.01 0.14 0.00 0.02 0.03 0.12

doi:10.1371/journal.pone.0063297.t002
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P~
I 0

R Q

� �
ð3Þ

N~(I{Q){1 ð4Þ

E(Ti)~
X
n

Nij ð5Þ

To analyze the results I followed statistical inference procedures

outlined in [16] and [26]. Specifically I tested two hypotheses. In

the first test the null hypothesis is that the Markov chain is of order

0, against the alternative hypothesis that the Markov chain is of

order 1. This test is performed for both national and regional

results. The test statistic has a x2 distribution with (m-1)2 degrees of

freedom, where m is the number of states. In the second test the

null hypothesis is that all 8 regional Markov chains are samples

from the same Markov chain, i.e., that regional incident

complexity processes are identical. This test statistic has a limiting

x2 distribution with mr(m-1)(s-1) degrees of freedom, where m is the

number of states, r is the order of the Markov chain, and s is the

number of samples, or regions.

Incident Complexity Analysis
Data on incident complexity transitions come from Incident

Status Summary (ICS-209) reports and span fiscal years 2002

through 2011 (the U.S. federal government’s fiscal year begins on

October 1 and ends September 30). Selection criteria included

only Forest Service fires lasting longer than one day, and excluded

incidents labeled as wildland fire use events, since over that time

frame policy changes removed fire use as a distinct type of

incident. This initial dataset contained 1,422 incidents. With these

reports I compiled daily incident complexity dynamics, which I

broke down at the national scale and according to Forest Service

Region. The Alaska Region, R10, is excluded due to too few

observations.

The ICS-209 is used for reporting information on large wildfires

and any other significant events on lands under federal protection

or federal ownership [27]. Information is entered at the incident or

dispatch level, and is used by agency managers at broader

geographic planning scales for decisions related to incident

prioritization and allocation of firefighting resources. ICS-209

reports are accessible online through the National Fire and

Aviation Management Web Applications site (FAMWEB).

Requirements for initial reporting and the frequency of updates

vary with incident-specific factors (size, management strategy,

incident complexity and organizational needs), as well as with the

policies of the responsible agency and the relevant interagency

Geographic Coordinating Area. The minimum national require-

ment is submission of an ICS-209 for any fire managed under a

full suppression strategy exceeding 100 acres (40 hectares) in

timber, 300 acres (121 hectares) in grass and brush, or has a Type

1 or 2 IMT assigned. Significant incidents not meeting official

criteria can still be reported into the system, for instance incidents

threatening many values-at-risk or incidents with sensitive

sociopolitical concerns. Reporting procedures require a final

ICS-209 submission, typically when the incident is 100%

contained or controlled, or when the remaining assigned resources

are so few as to have no effect on agency resource availability.

ICS-209 forms contain 47 blocks of information, including

current date and time, location, reporting status (initial, update,

final), management strategy, fuels involved, values-at-risk, com-

mitted resources, estimated costs, estimated percent of contained

perimeter or of management objectives completed, and, critically,

IMT type. There are 14 types of IMTs, 8 of which I condensed

into 5 complexity levels on the basis of the qualifications of the IC.

Some of these types correspond to response organizations with a

qualified IC managing the fire without being in a complete

‘‘Team’’ configuration, depending on resource availability and

agency objectives for the incident. I excluded 6 IMT types (A–F)

because they relate to either fire use or multi-agency incident

management organizations. I removed all incidents where any of

the reported daily IMT types were A–F. Table 1 summarizes ICS-

209 information broken down by IMT types.

Limitations with this dataset include missing, incomplete, or

incorrect records, but many of the issues can be resolved by

following ICS-209 reporting guidance and scrutinizing reporting

patterns. The primary issue faced with this analysis was that for

many incidents the final incident report was not submitted until

well after the incident was first reported to have reached 100%

containment. In part this phenomenon stems from potential errors

in early reports of percent contained, but mostly this is due to

untimely submission of final reports, a known issue within the ICS-

209 reporting system. Whereas percent contained is a required

field, information on firefighting resources committed is optional

and is often not provided, and thus can’t be used as a secondary

check of actual incident containment date. Approximately 33% of

all incidents submitted their final report on the date when percent

contained reached 100%, 60% did so within 5 days of reporting

100% containment, and further nearly 75% submitted a final

report within 10 days of reporting 100% containment. A small

fraction of incidents (,3%) however did not submit a final report

until hundreds of days after reporting 100% containment. To be

consistent across all fires, consistent with final reporting criteria,

and to avoid overestimating incident durations where the final

reports were filed late, I stopped counting daily transitions after the

first reported instance of 100% containment, and added one

transition into the absorbing containment state. In other cases,

where the final report was submitted prior to 100% containment

being reported, I added one daily observation reaching the

containment state at the last reported entry. Secondly, another

data issue related to final fire sizes that were either missing or

hadn’t been updated since initial entries. For purposes of average

area burned calculations I only included fire sizes greater than 100

acres (40 hectares), based in part on national minimum reporting

Table 3. Daily transition probabilities between incident
complexity levels, presented at the national scale.

National

1 2 3 4 5 C

1 0.93 0.02 0.01 0.00 0.00 0.03

2 0.02 0.89 0.02 0.00 0.00 0.06

3 0.01 0.03 0.90 0.01 0.00 0.05

4 0.00 0.00 0.01 0.95 0.00 0.03

5 0.00 0.00 0.00 0.01 0.96 0.04

C 0.00 0.00 0.00 0.00 0.00 1.00

doi:10.1371/journal.pone.0063297.t003
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requirements and to be consistent with the general use of ICS-209

forms for large wildfires.

Results

Table 2 presents summary statistics on the set of fires analyzed.

After filtering, this dataset included a total of 1,339 incidents, over

30,308 total fire days, for an average of 23 days per incident until

containment. Regional variation in average time until contain-

ment was large, with Region 1 having the longest average time

until containment (46 days), and Region 8 the shortest (9 days).

Regional variation in the number of incidents is also evident, with

Region 2 (80 fires) and Region 9 (35 fires) having particularly few

incidents over the analysis period. Region 5 has the highest fire

load (226 fires) but relatively short average time until containment

(12 days). Mean fire sizes were largest in Region 3 (16,091 acres;

6,512 hectares) and smallest in Region 8 (1,469 acres; 594

hectares).

Perhaps more informative are regional differences in the

proportion of time that active incidents are of a given complexity

type. Nationally only 27% of fire days are of Type 1 or 2, with the

remainder of Type 3–5 and thus likely managed by local

firefighting resources. Most regions have comparable proportions

of Type 1 and 2 fire days. Regions 5 and 6 by contrast have large

proportions of fire days with Type 1 and 2 incident complexity

levels, 66% and 42%, respectively.

Table 3 presents the maximum likelihood estimates for daily

transition probabilities for incident complexity at the national

Table 4. Daily transition probabilities between incident complexity levels, sorted according to Forest Service Region.

R1 R5

1 2 3 4 5 C 1 2 3 4 5 C

1 0.94 0.03 0.02 0.00 0.00 0.01 1 0.94 0.02 0.01 0.00 0.00 0.03

2 0.01 0.94 0.02 0.00 0.00 0.03 2 0.03 0.83 0.02 0.00 0.00 0.12

3 0.00 0.01 0.95 0.01 0.00 0.02 3 0.02 0.12 0.75 0.00 0.00 0.12

4 0.00 0.00 0.00 0.98 0.00 0.02 4 0.00 0.00 0.01 0.92 0.00 0.07

5 0.00 0.00 0.00 0.00 0.97 0.03 5 0.00 0.00 0.00 0.00 0.00 1.00

C 0.00 0.00 0.00 0.00 0.00 1.00 C 0.00 0.00 0.00 0.00 0.00 1.00

R2 R6

1 2 3 4 5 C 1 2 3 4 5 C

1 0.90 0.01 0.01 0.00 0.00 0.08 1 0.94 0.02 0.02 0.00 0.00 0.02

2 0.01 0.89 0.04 0.00 0.00 0.06 2 0.02 0.89 0.03 0.00 0.00 0.06

3 0.01 0.03 0.91 0.01 0.00 0.04 3 0.00 0.04 0.92 0.00 0.00 0.04

4 0.00 0.00 0.01 0.96 0.00 0.03 4 0.00 0.00 0.01 0.96 0.00 0.03

5 0.00 0.00 0.00 0.00 0.96 0.04 5 0.00 0.00 0.00 0.01 0.97 0.01

C 0.00 0.00 0.00 0.00 0.00 1.00 C 0.00 0.00 0.00 0.00 0.00 1.00

R3 R8

1 2 3 4 5 C 1 2 3 4 5 C

1 0.89 0.03 0.02 0.00 0.00 0.06 1 0.86 0.00 0.06 0.00 0.00 0.08

2 0.01 0.87 0.03 0.01 0.00 0.08 2 0.00 0.92 0.02 0.01 0.00 0.05

3 0.01 0.04 0.86 0.02 0.00 0.07 3 0.01 0.01 0.82 0.02 0.00 0.14

4 0.00 0.00 0.01 0.94 0.00 0.04 4 0.00 0.00 0.03 0.82 0.01 0.14

5 0.00 0.00 0.00 0.00 0.88 0.12 5 0.00 0.00 0.00 0.00 0.89 0.11

C 0.00 0.00 0.00 0.00 0.00 1.00 C 0.00 0.00 0.00 0.00 0.00 1.00

R4 R9

1 2 3 4 5 C 1 2 3 4 5 C

1 0.93 0.01 0.01 0.00 0.00 0.04 1 0.93 0.05 0.00 0.00 0.00 0.03

2 0.01 0.89 0.02 0.01 0.00 0.07 2 0.04 0.86 0.04 0.00 0.00 0.07

3 0.01 0.03 0.91 0.01 0.00 0.04 3 0.00 0.06 0.79 0.00 0.00 0.15

4 0.00 0.00 0.01 0.96 0.00 0.02 4 0.00 0.01 0.01 0.89 0.00 0.09

5 0.00 0.00 0.00 0.01 0.95 0.04 5 0.00 0.00 0.00 0.00 0.98 0.02

C 0.00 0.00 0.00 0.00 0.00 1.00 C 0.00 0.00 0.00 0.00 0.00 1.00

doi:10.1371/journal.pone.0063297.t004
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level, and Table 4 presents identical information organized

according to Forest Service Region. Table 5 presents the results

of the likelihood ratio statistical tests for null hypothesis that chain

is of order 0 against alternative hypothesis that chain is of order 1

(hypothesis 1). Results for the national and regional first-order

Markov chains are significant at the p,0.005 level. Similar

statistical results apply for the second hypothesis, rejecting the null

hypothesis that all 8 regional Markov chains are identical

processes (test statistics is 1,127.72; 210 degrees of freedom;

p,0.005).

Within-state transition probabilities (Pii) are high, ranging from

0.89 and 0.96 at the national level. Regional within-state transition

probabilities are similarly high but show greater variation, with

Region 1 on the higher end and with Region 5, Region 8, and

Region 9 on the lower end. Across all regions the mean within-

state transition probability is 0.88. Thus daily incident complexity

levels tend to remain consistent. Containment transitions proba-

bilities (PiC; exclusive of Pcc) are generally low at the national scale,

and lowest in Regions 1 (0.01 to 0.03) and 6 (0.01 to 0.06). PiC
values are highest in Region 9 (0.02 to 0.15), followed by Region 8

(0.05 to 0.14) and Region 5 (0.03 to 0.12). Regions with higher

containment probabilities tend to have shorter average times until

containment.

Table 6 presents the cumulative probabilities of incident

complexity increasing (CPI) to Type 1 or 2. Region 5 (0.17) and

Region 9 (0.10) have the highest cumulative probabilities, which is

likely tied to the relatively high levels of fire days being managed as

Type 1 or 2 in those regions (see Table 2). Elsewhere, regional CPI

values range from just 0.03 to 0.06, and at the national scale CPI is

0.06. In combination with transition probability information from

Tables 3 and 4, the CPI values lead to an interpretation that

escalations to highest incident complexity levels are rare, but once

an incident reaches a high complexity level it can remain there for

some time.

Table 7 provides the expected time until containment for each

initial state i, E(Ti). Generally these values are consistent with

average times until containment presented in Table 2. Region 1

has the longest expected time until containment, ranging from 37

to 50 days. Region 8 has the shortest expected time until

containment, ranging from 7 to 15 days. Geographic variation is

evident, and although there is not a strong pattern across the

starting complexity level, incidents that start as Type 4 or Type 5

tend to have greater expected times until containment. Region 5 is

an exception with a very short expected duration starting as Type

5, which is an artifact of a single observation of a Type 5 incident

that transitioned to containment in one day.

Figure 4 presents a simplified three-state Markov model (see

Figure 3), based on national-scale results and combining Types 1–

2 into ‘‘high’’ complexity and Types 3–5 into ‘‘low’’ complexity.

This Markov chain yields high within-state transition probabilities

(0.92 to 0.94), low containment probabilities (0.04 to 0.05), and an

even lower probability of incident complexity increasing from low

to high (0.02). Expected time until containment for ‘‘low’’

Table 5. Results of likelihood ratio statistical tests for null hypothesis that chain is of order 0 against alternative hypothesis that
chain is of order 1.

Analysis Scale Sample size (# of Fires) Test statistic value Degrees of freedom

National 1,339 62,259.42 16

R1 217 21,918.95 16

R2 80 3,664.84 16

R3 232 6,560.46 16

R4 200 11,922.95 16

R5 226 3,540.52 16

R6 147 7,092.56 16

R8 202 2,144.49 16

R9 35 854.21 16

doi:10.1371/journal.pone.0063297.t005

Table 6. Cumulative probabilities of incident complexity increasing (CPI) to Type 1 or Type 2.

Analysis Scale Cumulative Probability of Incident Complexity Increase

National 0.06

R1 0.03

R2 0.05

R3 0.06

R4 0.05

R5 0.17

R6 0.06

R8 0.02

R9 0.10

doi:10.1371/journal.pone.0063297.t006
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complexity incidents is 22 days, and 19 days for ‘‘high’’ complexity

incidents.

Discussion

Incident complexity dynamics can be modeled as a Markov

chain, and results of this analysis reveal significant geographic

variation in transition probabilities and expected time until

containment. Results reflect environmental factors influencing fire

occurrence and growth, as well as socioeconomic and institutional

factors influencing how fires are managed. For instance in Region

5, where the presence of dense human populations in fire-prone

areas tends to lead to policies of aggressive suppression, results

show a high proportion of Type 1 and 2 incidents and a short

average duration.

Results are consistent with statistical cost models that find

statistically significant influence of Forest Service Region on

suppression costs [11]. Regions with substantially higher propor-

tions of Type 1 and 2 complexity levels, particularly Regions 5 and

6, also tend to have higher suppression costs. This analysis

highlighting likely variation in fire duration and firefighting

resource use can help move towards a more mechanistic

understanding of suppression operations and costs. Further,

coupling this information with knowledge gained from structured

post-fire processes to identify key parameters of incident decisions

[22] could improve prospective assessment of fire management

needs.

This analysis could also help target cost-effective fire manage-

ment investments. For instance the longer expected durations for

incidents that begin as Types 4 and 5 could in some cases reflect

local needs for improved capacity, and preparedness investments

could help reduce the frequency of fires growing to overwhelm

local resources. Geographic variation in incident complexity could

also inform prepositioning strategies for national resources like

large airtankers and enhance initial attack effectiveness. Where

wildfire risks to human communities are thought to be driving

suppression response, additional analyses can consider designing

protective fuel treatment strategies [28–30] and can examine how

the arrangement and location of homes contributes to elevated

risks for certain communities [31]. Results of national scale

wildfire risk assessments [32] could be incorporated to project

future areas of concern for high suppression costs or high levels of

firefighting resource demand.

Issues with the ICS-209 reporting system are acknowledged,

both in terms of gaps and potential errors with the data itself, as

well as how data were analyzed. Time until containment is

effectively used as a proxy for incident duration, given uncertain-

ties associated with the submission date of the final ICS-209

report. The criterion to consider an incident contained at the first

report of 100% containment could in some cases lead to

underestimating actual time until containment, and it is recog-

nized that firefighting resources and incident management teams

may remain mobilized for days or longer after full containment or

control is achieved. It is beyond the scope of this analysis to

perform a thorough fire-by-fire evaluation to identify potential

Table 7. Expected time until containment for a fire that starts at a given complexity level, presented for National and Regional
scales.

Initial Complexity Level National R1 R2 R3 R4 R5 R6 R8 R9

1 22 48 14 16 20 22 31 10 23

2 17 37 18 14 18 11 21 15 16

3 20 37 22 14 23 11 23 8 9

4 24 50 31 19 31 14 31 7 11

5 31 33 25 8 26 1 44 9 50

doi:10.1371/journal.pone.0063297.t007

Figure 4. Three-state Markov Chain model of national-scale incident complexity dynamics, a simplified representation of the
results presented in Table 3. Due to rounding the presented transition probabilities may not sum perfectly to 1.00.
doi:10.1371/journal.pone.0063297.g004
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instances of or causes for a delayed final ICS-209 submission. It

will likely prove useful to couple ICS-209 information with

information from other databases, in particular financial account-

ing systems that track firefighting resources, to better identify when

an incident is both reported as fully contained and has little to no

firefighting resources assigned. Questions related to handling time

until containment should not measurably affect modeled transition

probabilities, however, and the range of modeled expected times

until containment (Table 7) are consistent with observed

containment times presented in Table 2. The nuances, intricacies,

and contingencies of incident management are difficult to fully

capture, especially working from an operational dataset, but

nevertheless the modeling framework and results do nicely capture

the underlying dynamics of incident complexity evolution through

time.

One potential realm of improvement is the representation of the

decision space. In the current model suppression decisions are

captured only implicitly in the evolution of incident complexity.

An obvious direction is to move towards a Markov decision

process that can explicitly capture the range of decisions made by

fire managers, and in turn their influence on factors affecting the

evolution of incident complexity and fire outcomes. This could

present a novel stochastic dynamic optimization approach for

management of escaped large wildfires [33]. Management actions

could be defined in terms of the addition or demobilization of

firefighting resources.

Some straightforward modeling extensions and analyses are

more immediately apparent. Examining seasonality trends by

geographic region could identify time periods of high synchronous

demand for national firefighting resources. States could be

characterized with additional information such as contemporane-

ous regional and national fire loads, to see if incident complexity

dynamics change with firefighting resource scarcity. Examining

higher-order Markov chains is also possible, but comes with

tradeoffs in terms of an increased state space and a reduced sample

size as short-duration incidents would be excluded. Further,

building off the decision process idea introduced above, it seems

likely that decisions to escalate or de-escalate incident complexity

would be based more on current fire conditions and available

resources than on the temporal duration of the existing incident

complexity level.

Longer term work could seek to better account for additional

sources of uncertainty in the system presented in Figure 1. First,

additional uncertainty stems from partial observability of the true

system state, a commonality among natural resource management

problems [34]. Partial observability could exist, for instance, in

terms of uncertainty regarding the current fire perimeter, fire

behavior, and the exact location of threatened natural resources

such as nesting sites. Second, additional uncertainty stems from

structural uncertainty regarding the model of state transitions.

Structural uncertainty is present for instance in terms of how we

understand and model fire spread and fire containment [35,14].

Continued analysis of the management of escaped large

wildland fires should help improve models of suppression

operations and suppression decision making, and ultimately

improve our ability to forecast and manage suppression costs.

An improved ability to forecast fire management budgets and

firefighting resource demands should prove increasingly useful,

particularly in the face of a changing climate and expanding

human development into fire-prone areas.
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